Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 44: 101940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537326

RESUMO

Precision Medicine is being increasingly used in the developed world to improve health care. While several Precision Medicine (PM) initiatives have been launched worldwide, their implementations have proven to be more challenging particularly in low- and middle-income countries. To address this issue, the "Personalized Medicine in North Africa" initiative (PerMediNA) was launched in three North African countries namely Tunisia, Algeria and Morocco. PerMediNA is coordinated by Institut Pasteur de Tunis together with the French Ministry for Europe and Foreign Affairs, with the support of Institut Pasteur in France. The project is carried out along with Institut Pasteur d'Algérie and Institut Pasteur du Maroc in collaboration with national and international leading institutions in the field of PM including Institut Gustave Roussy in Paris. PerMediNA aims to assess the readiness level of PM implementation in North Africa, to strengthen PM infrastructure, to provide workforce training, to generate genomic data on North African populations, to implement cost effective, affordable and sustainable genetic testing for cancer patients and to inform policy makers on how to translate research knowledge into health products and services. Gender equity and involvement of young scientists in this implementation process are other key goals of the PerMediNA project. In this paper, we are describing PerMediNA as the first PM implementation initiative in North Africa. Such initiatives contribute significantly in shortening existing health disparities and inequities between developed and developing countries and accelerate access to innovative treatments for global health.

2.
Genes (Basel) ; 13(12)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36553480

RESUMO

E-cadherin, a CDH1 gene product, is a calcium-dependent cell-cell adhesion molecule playing a critical role in the establishment of epithelial architecture, maintenance of cell polarity, and differentiation. Germline pathogenic variants in the CDH1 gene are associated with hereditary diffuse gastric cancer (HDGC), and large rearrangements in the CDH1 gene are now being reported as well. Because CDH1 pathogenic variants could be associated with breast cancer (BC) susceptibility, CDH1 rearrangements could also impact it. The aim of our study is to identify rearrangements in the CDH1 gene in 148 BC cases with no BRCA1 and BRCA2 pathogenic variants. To do so, a zoom-in CGH array, covering the exonic, intronic, and flanking regions of the CDH1 gene, was used to screen our cohort. Intron 2 of the CDH1 gene was specifically targeted because it is largely reported to include several regulatory regions. As results, we detected one large rearrangement causing a premature stop in exon 3 of the CDH1 gene in a proband with a bilateral lobular breast carcinoma and a gastric carcinoma (GC). Two large rearrangements in the intron 2, a deletion and a duplication, were also reported only with BC cases without any familial history of GC. No germline rearrangements in the CDH1 coding region were detected in those families without GC and with a broad range of BC susceptibility. This study confirms the diversity of large rearrangements in the CDH1 gene. The rearrangements identified in intron 2 highlight the putative role of this intron in CDH1 regulation and alternative transcripts. Recurrent duplication copy number variations (CNV) are found in this region, and the deletion encompasses an alternative CDH1 transcript. Screening for large rearrangements in the CDH1 gene could be important for genetic testing of BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Íntrons/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Linhagem , Proteína BRCA1/genética , Antígenos CD/genética , Caderinas/genética
3.
Genes (Basel) ; 13(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36011265

RESUMO

Several syndromic forms of digestive cancers are known to predispose to early-onset gastric tumors such as Hereditary Diffuse Gastric Cancer (HDGC) and Lynch Syndrome (LS). LSII is an extracolonic cancer syndrome characterized by a tumor spectrum including gastric cancer (GC). In the current work, our main aim was to identify the mutational spectrum underlying the genetic predisposition to diffuse gastric tumors occurring in a Tunisian family suspected of both HDGC and LS II syndromes. We selected the index case "JI-021", which was a woman diagnosed with a Diffuse Gastric Carcinoma and fulfilling the international guidelines for both HDGC and LSII syndromes. For DNA repair, a custom panel targeting 87 candidate genes recovering the four DNA repair pathways was used. Structural bioinformatics analysis was conducted to predict the effect of the revealed variants on the functional properties of the proteins. DNA repair genes panel screening identified two variants: a rare MSH2 c.728G>A classified as a variant with uncertain significance (VUS) and a novel FANCD2 variant c.1879G>T. The structural prediction model of the MSH2 variant and electrostatic potential calculation showed for the first time that MSH2 c.728G>A is likely pathogenic and is involved in the MSH2-MLH1 complex stability. It appears to affect the MSH2-MLH1 complex as well as DNA-complex stability. The c.1879G>T FANCD2 variant was predicted to destabilize the protein structure. Our results showed that the MSH2 p.R243Q variant is likely pathogenic and is involved in the MSH2-MLH1 complex stability, and molecular modeling analysis highlights a putative impact on the binding with MLH1 by disrupting the electrostatic potential, suggesting the revision of its status from VUS to likely pathogenic. This variant seems to be a shared variant in the Mediterranean region. These findings emphasize the importance of testing DNA repair genes for patients diagnosed with diffuse GC with suspicion of LSII and colorectal cancer allowing better clinical surveillance for more personalized medicine.


Assuntos
Carcinoma , Síndrome de Lynch II , Neoplasias Gástricas , Reparo de Erro de Pareamento de DNA , Feminino , Mutação em Linhagem Germinativa , Humanos , Proteína 2 Homóloga a MutS/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Tunísia
4.
Genes (Basel) ; 13(3)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35327954

RESUMO

Mutational screening of the CDH1 gene is a standard treatment for patients who fulfill Hereditary Diffuse Gastric Cancer (HDGC) testing criteria. In this framework, the classification of variants found in this gene is a crucial step for the clinical management of patients at high risk for HDGC. The aim of our study was to identify CDH1 as well as CTNNA1 mutational profiles predisposing to HDGC in Tunisia. Thirty-four cases were included for this purpose. We performed Sanger sequencing for the entire coding region of both genes and MLPA (Multiplex Ligation Probe Amplification) assays to investigate large rearrangements of the CDH1 gene. As a result, three cases, all with the HDGC inclusion criteria (8.82% of the entire cohort), carried pathogenic and likely pathogenic variants of the CDH1 gene. These variants involve a novel splicing alteration, a missense c.2281G > A detected by Sanger sequencing, and a large rearrangement detected by MLPA. No pathogenic CTNNA1 variants were found. The large rearrangement is clearly pathogenic, implicating a large deletion of two exons. The novel splicing variant creates a cryptic site. The missense variant is a VUS (Variant with Uncertain Significance). With ACMG (American College of Medical Genetics and Genomics) classification and the evidence available, we thus suggest a revision of its status to likely pathogenic. Further functional studies or cosegregation analysis should be performed to confirm its pathogenicity. In addition, molecular exploration will be needed to understand the etiology of the other CDH1- and CTNNA1-negative cases fulfilling the HDGC inclusion criteria.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Antígenos CD/genética , Caderinas/genética , Predisposição Genética para Doença , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Linhagem , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...